

Bacteria and Benthic TMDLs in Occoquan Watershed Stream Segments

First TAC Meeting March 1, 2005

Overview of Presentation

- I. Provide background on water quality assessment and the impaired waters listing process
- II. Discuss the Occoquan Streams impairments to be addressed in this TMDL study
- III. Provide overview of the TMDL process

I. Background on water quality assessment and the impaired waters listing process

305(b) Assessment and 303(d) Listing Processes

- Monitor and assess water quality for 305(b) Report
- Place any waters not meeting Water
 Quality Standards on 303(d) List
- Develop TMDL for each listed water
- Develop TMDL Implementation Plan (IP)

• Implement TMDL in stages, and monitor to detect resulting improvements in water quality

Water Quality Standards

Listing of impaired waters
and TMDL development
are based on
Water Quality Standards (WQS)

Water Quality Standards

Water Quality Standards (WQS) are regulations based on federal and state law that:

- set **numeric** and **narrative** limits on pollutants
- consist of **designated use(s)** and water quality **criteria**

Water Quality Standards

Purpose of WQS:

- **protection** of the designated uses of state waters
 - aquatic life
 - fishing
 - shellfish
 - swimming
 - drinking water
- restoration of state waters (TMDLs)

Applicable Designated Uses

All surface waters in Virginia are currently designated for **primary contact recreation** (e.g. swimming) and **aquatic life use**

- For primary contact recreation use, waters are assessed using fecal coliform and *E*. *coli* bacteria measurements
- For aquatic life use, waters are assessed using various water quality data measures and biological monitoring

Assessment Methodology: Recreation

Fecal coliform bacteria and E. coli bacteria

- **Fecal bacteria** are found in the digestive tract of humans and warm blooded animals
- Fecal bacteria are an indicator of the potential presence of pathogens in waterbodies
- The presence of fecal bacteria in water samples is a strong indicator of recent sewage or animal waste contamination

Assessment Methodology: Recreation

Fecal coliform bacteria and E. coli bacteria

Indicator species for freshwater: E. coli

- Change in indicator species from fecal coliform to
 E. coli (fresh water)
- *E. coli* bacteria are a **subset of fecal coliform** bacteria and correlate better with swimming-associated illness

Summary of Changes in Primary Contact Criteria

Indicator	Status	Instantaneous Maximum (cfu/100mL)	Geometric Mean (cfu/100 mL)
Fecal Coliform	Old	1,000	200
E. coli	New	235	126
Fecal Coliform	Interim	400	200

- Changes went into effect on January 15, 2003
- Both New *E. coli* and Interim Fecal Coliform criteria apply
- Fecal coliform criteria will be phased out entirely once 12 *E. coli* samples have been collected or after June 30, 2008

Assessment Methodology: Aquatic Life/ Benthic Impairments

- Based on benthic macroinvertebrate biological monitoring data
- Follows EPA Rapid Bioassessment Protocols (RBPII)
- Later ongoing monitoring will transition to Streams Condition Index (SCI) once this methodology is approved

II. The Occoquan Streams TMDL

Impairments in the Upper Occoquan Watershed

WATERBODY			Length	Year	Impair-
ID	ID Stream		(mi.)	Listed	ment
VAN-A19R	Broad Run	Prince William	1.51	2002	Bacteria
VAN-A19R	Broad Run	Prince William	7.26	2002	Bacteria
VAN-A19R	Broad Run	Prince William	1.06	2004	Bacteria
VAN-A19R	South Run	Fauquier, Prince	2.34	2004	Bacteria
		William	2.34	1996	Benthic
VAN-A19R	Kettle Run	Prince William	7.59	2002	Bacteria
VAN-A20R	Occoquan River	Prince William	1.61	2004	Bacteria
VAN-A21R	Little Bull Run	Prince William	3.03	2004	Bacteria
VAN-A23R	Bull Run	Prince William,	4.8	2004	Bacteria
		Fairfax	15.64	1996	Benthic
VAN-A23R	Popes Head	Fairfax	4.92	2004	Bacteria
	Creek		4.92	1998	Benthic

Occoquan Streams 2004 Water Quality Assessment Results for Bacteria

TMDL_ID	WB_NAME	Monitoring Station	Location	Fecal Colifor	rm
				Exceedences/Samples	%
VAN-A19R-01	Broad Run	1ABRU001.59	Rte. 692	1/ 6	16.7%
VAN-A19R-02	Broad Run	1ABRU007.58	Rte. 28	4/ 19	21.1%
VAN-A19R-02	Broad Run	1ABRU020.12	Rte. 29/15	7/ 18	38.9%
VAN-A19R-05	Broad Run	1ABRU024.74	Rte. 628	2/ 5	40.0%
VAN-A19R-03	Kettle Run	1AKET000.80	Rte. 619	8/ 20	40.0%
VAN-A19R-03	Kettle Run	1AKET002.06	Rte. 611	1/ 5	20.0%
VAN-A19R-04	South Run	1ASOT001.44	Rte. 215	5/ 18	27.8%
VAN-A20R-01	Occoquan River	1AOCC024.74	Rte. 234	4/ 16	25.0%
VAN-A21R-01	Little Bull Run	1ALII003.97	Rte. 705	2/ 17	11.8%
VAN-A23R-01	Bull Run	1ABUL010.28	Rte. 28	4/ 34	11.8%
VAN-A23R-02	Popes Head Creek	1APOE002.00	Rte. 645	3/ 20	15.0%

A greater than 10.5% exceedance rate with a minimum of two sampling events results in an impairment listing.

Occoquan Streams Benthic Impairments

• The three benthic-impaired streams have been under ongoing biological monitoring

South Run and Bull Run
 1994-2000, 2004→

Popes Head Creek
 1997-2000, 2004→

- South Run and Bull Run First listed in 1996. Popes Head Creek first listed in 1998.
- Reference sites
 - Catoctin Creek used for South Run and Popes Head Creek
 - Rapidan River used for Bull Run

III. Overview of the TMDL process

Virginia TMDLs

- Clean Water Act §303(d) and 40 CFR §130.7 requires development of TMDLs
- In 1999, EPA signed a Consent Decree with lawsuit Plaintiffs, agreeing to develop TMDLs in Virginia
- VDEQ is required to develop TMDLs and Implementation Plans (IPs) under state statute (Water Quality Monitoring, Information, and Restoration Act WQMIRA)

What is a TMDL? Total Maximum Daily Load

A TMDL is a **pollution budget**:

TMDL = Sum of WLA + Sum of LA + MOS

Where:

TMDL = Total Maximum Daily Load

WLA = Waste Load Allocation (point sources)

LA = Load Allocation (nonpoint sources)

MOS = Margin of Safety

Required Elements of a TMDL

A TMDL must:

- be developed to meet Water Quality Standards
- be developed for critical stream conditions
- consider seasonal variations
- consider impacts of background contributions
- include wasteload and load allocations (WLA, LA)
- include a margin of safety (MOS)
- be subject to public participation
- provide reasonable assurance of implementation

TMDL Development Methodology

- Identify all types of sources of a given pollutant within the watershed
- Calculate the amount of pollutant entering the stream from each source type
- Calculate the pollutant reductions needed, by source, to attain Water Quality Standards
- Allocate the allowable loading to each source and include a margin of safety

Ongoing Monitoring in Support of TMDL Process

Wtrshd	Station ID	Stream	Location	Monitoring Yr	Parameters
A 19R	1ABRU001.59	Broad Run	Rt. #692	2003-2004	FC, e coli
A 19R	1ABRU011.24	Broad Run	Sudley Manor Dr.	2003-2004	BST, FC, e coli
A19R	1ABRU020.12	Broad Run	Rt. 29/15	2003-2004	BST, FC, e coli
A19R	1ABRU029.80	Broad Run	Rt. 55	2003-2004	FC, e coli
A19R	1AKET002.06	Kettle Run	Rt. 611	2003-2004	BST
A19R	1AKET012.03	Kettle Run	Rt. 761	2003-2004	FC, e coli
A19R	1ATRA001.02	Trapp Branch	Rt. 674	2003-2004	FC, e coli
A19R	1ASOT001.65	South Run	Rt. 652	2003-2004	FC, e coli
A19R	1ABRU026.40	Broad Run	Rt. 628	2004-2005	BST, FC, e coli
A19R	1ASOT001.65*	South Run	Rt. 652	2004-2005	BST, FC, e coli
A20R	1AOCC021.35*	Occoquan River	Rt. #3000	2004-2005	BST, FC, e coli
A21R	1ALII003.97	Little Bull Run	Rt. # 705	2004-2005	BST, FC, e coli
A23R	1ABUL010.28	Bull Run	Rt. 28	2004-2005	FC, e coli
A23R	1APOE002.00	Popes Head Creek	Rt. #645	2004-2005	BST, FC, e coli
A23R	1ABUL010.28	Bull Run	Rt. 28	2004-2005	BST, FC, e coli
A 19R	1ASOT001.44	South Run	Rt. #652	2004	Biological, Nutrients, Toxics, Metals
A23R	1ABUL010.28	Bull Run	Rt. #28	2003-2004	Biological, Nutrients, Toxics
A21R	1ABUL025.94	Bull Run	Rt. #705	2004	Biological
A23R	1APOE002.00	Popes Head Creek	Rt. # 645	2004	Biological, Nutrients, Toxics

Roles of DEQ and DCR in TMDL Development

- DEQ is the lead for TMDL development
- DEQ is responsible for ensuring public participation and submitting TMDLs to EPA for approval
- DCR is the lead for nonpoint source TMDL Implementation Plans and implementation (including MS4 permits)

Role of Technical Advisory Committee in TMDL Development

- TACs are asked to provide technical input and guidance to the process
- Requested to:
 - review data, methods, processes
 - advise of technical issues
 - assist with public outreach process

Bacteria and Benthic TMDLs in Occoquan Watershed Stream Segments

Kimberly Davis

Regional TMDL Coordinator

Phone: (703) 583-3937

E-mail: kvdavis@deq.virginia.gov

Previous Bacteria Standard

Indicator species: fecal coliform

Instantaneous max: 1,000 cfu/100 mL

- Applicable for data sets with 1 or fewer samples in 30 days
- Used in water quality assessment because monitoring is usually conducted bimonthly

Geometric mean: 200 cfu/100 mL

- Applicable for data sets with 2 or more samples in 30 days
- Used in TMDL
 development because
 model output is
 usually daily

Interim Bacteria Standard

New fecal coliform criteria:

- interim criteria necessary for transition from fecal coliform to E. coli
- will be phased out when 12 *E. coli* observations available or after June 30, 2008

Instantaneous max:

400 cfu/100 mL

Applicable for all data sets; no more than 10% of samples in a calendar month may exceed the maximum

Geometric mean:

200 cfu/100 mL

Applicable for data sets with 2 or more samples in a calendar month

Applicable Bacteria Standard

New indicator species: E. coli

Instantaneous max:

235 cfu/100 mL

Applicable for all data sets; no samples may exceed the maximum

Geometric mean:

126 cfu/100 mL

Applicable for data sets with 2 or more samples in a calendar month